Evaluation of Image Fusion Performance with Visible Differences
نویسندگان
چکیده
Multisensor signal-level image fusion has attracted considerable research attention recently. Whereas it is relatively straightforward to obtain a fused image, e.g. a simple but crude method is to average the input signals, assessing the performance of fusion algorithms is much harder in practice. This is particularly true in widespread “fusion for display” applications where multisensor images are fused and the resulting image is presented to a human operator. As recent studies have shown, the most direct and reliable image fusion evaluation method, subjective tests with a representative sample of potential users are expensive in terms of both time/effort and equipment required. This paper presents an investigation into the application of the Visible signal Differences Prediction modelling, to the objective evaluation of the performance of fusion algorithms. Thus given a pair of input images and a resulting fused image, the Visual Difference Prediction process evaluates the probability that a signal difference between each of the inputs and the fused image can be detected by the human visual system. The resulting probability maps are used to form objective fusion performance metrics and are also integrated with more complex fusion performance measures. Experimental results indicate that the inclusion of visible differences information in fusion assessment yields metrics whose accuracy, with reference to subjective results, is superior to that obtained from the state of the art objective fusion performance measures.
منابع مشابه
Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملWavelet-Based Visible and Infrared Image Fusion: A Comparative Study
This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluate...
متن کامل